Nous allons dans cette page traiter un peu de méthodologie.
Il s'agit d'une page pratique consacrée à la résolution des exercices et problèmes que l'on peut rencontrer sur les suites dans les épreuves d'examens et de concours. La plupart des questions tournent autour de la question de convergence, mais il est possible également que des questions annexes visent à établir que certaines suites sont bornées ou monotones ou périodiques. Ces questions sont en général des préliminaires. Dans tous les cas pour démontrer qu'une suite est monotone ou bornée, le raisonnement par récurrence est un outil privilégié, particulièrement si la suite elle-même est donnée par une relation de récurrence.
Les questions sur la convergence peuvent être formulées de diverses manières, mais très souvent le raisonnement est fait en deux temps: Trouver la valeur de la limite est en général plus difficile qu'établir que la limite existe, particulièrement si aucune indication n'est fournie. Fort heureusement de nombreux énoncés donnent la valeur de la limite et il suffit alors de démontrer que la suite converge vers la valeur donnée. Mais ce n'est pas toujours le cas. Dans le cas le plus défavorable où la valeur de la limite n'est pas donnée l'emploi de la calculatrice (pour localiser la limite) n'est que d'un intérêt très faible sauf si cette limite est entière. Très souvent les suites 'classiques' convergent vers des valeurs qui sont commensurables à des constantes mathématiques célèbres comme π ou le nombre d'Euler e. Il est donc peu vraisemblable que vous reconnaissiez une fraction ou une puissance d'une telle constante.
La calculatrice vous servira par contre à vérifier que votre conjecture est correcte. Si vous avez pu, par des méthodes déductives, établir que la limite de la suite est π/4 ou π2/6, il n'est pas inutile de programmer le calcul de quelques termes d'indices élevés pour vous conforter dans votre conviction, ceci n'ayant évidemment aucune valeur de démonstration.

Démontrer qu'une suite est convergente

On cherchera autant que possible à utiliser un 'critère de convergence'.
Nous rappelons ici les principaux: Vous disposez également de techniques d'encadrement, connues sous le nom de 'lemmes des gendarmes': Vous disposez enfin de quelques tests, comme: Remarque: La preuve de la validité de la règle de Cauchy réside dans le fait que toute suite satisfaisant à la règle de Cauchy satisfait aussi au critère de Cauchy. Cela se fait par sommation au moyen de l'inégalité triangulaire.
L'arsenal présenté ici contient tout l'équipement de base pour décider de la convergence des suites. Il existe naturellement des tests plus élaborés qui sont des raffinements des règles de Cauchy et d'Alembert, mais ces tests nécessitent des connaissances d'analyse mathématique plus poussés. Pour des raisons pédagogiques ils ne seront donc pas présentés ici.

Démontrer qu'une suite converge vers une valeur a

Autant que possible on essaiera de décomposer le terme général de la suite en sommes, produits, quotients d'expressions plus simples ayant des limites connues ou évidentes pour appliquer les différents théorèmes sur les limites et les opérations algébriques.
Si cette stratégie échoue, et si la limite est connue ou donnée, il sera alors nécessaire de revenir à la définition, et donc de démontrer des inégalités.
Lorsque la limite n'est pas connue, on peut quelquefois la déterminer en levant des indéterminantions (voir indéterminations des sommes, indéterminations des produits, indéterminations des quotients).
Quand rien de tout cela fonctionne, il faut le plus souvent utiliser des techniques plus élaborées et qui seront étudiées par la suite. Ces techniques font une large utilisation des 'développements limités'. En gros il s'agit de remplacer certains termes par des équivalents au sens des notations de Landau.
Dans les cas les plus difficiles, la connaissance d'un grand nombre de limites usuelles peut également être d'un grand secours, mais il s'agit là de posséder une véritable 'culture mathématique' que les débutants, en général, n'ont pas.

Démontrer qu'une suite ne converge pas

On peut par exemple montrer que la suite n'est pas bornée.
Une autre technique consiste à extraire de la suite une suite partielle divergente ou bien deux suites partielles convergeant vers des limites distinctes.